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MATHIAS BRAUN AND WENHAO ZHAO

Homework 7.1 (A general version of Bloch’s theorem). Show if f: U — C is holomorphic
and f’(c) # Oatapoint c € U, then f(U) contains disks of every radius (3/2 — \/E)slf’(c)l,
where s € (0, dist(c, dU)). In particular, show if f : C — C is entire and nonconstant, then
f(C) contains disks of arbitrarily large radii.

Solution. The function g: B;(0) — C defined by
MERE AL
sf'(c)
is well-defined and can be extended holomorphically to the slightly larger ball By, (0)
for 0 < 5 < (dist(c, 8U) — s)/s. Therefore, g € H(B1(0)) and by construction g’(0) = 1.

Applying Bloch’s theorem from the lecture notes yields the existence of p € C such that
B3/2_\r2(p) c g(B1(0)). It follows that

sf'(¢)By),_y5(p) € f(Bs(c)) € f(U).
This proves the first statement.

When f is entire and nonconstant, there exists ¢ € C such that f’(c¢) # 0. Thus we can
apply the first statement for every s > 0 which proves the second assertion.

Homework 7.2 (Biholomorphic functions on the unit ball). Let zg € B1(0) and define the
function ¢,,: B;(0) — C by

Z-20

1-%Z0z2

‘on(z) =

a. Show ¢, isa biholomorphic' map from B; (0) to B;(0).
b. Show every biholomorphic map f: B1(0) — B(0) is of the form f = a ¢, where
a € 0B (0)%

Solution. a. Since |Z9z| = |z0l|z] < |z|, the denominator never vanishes for z € B;(0),
showing ¢, is holomorphic.

We next check that ¢, indeed maps into the unit disk B;(0). Indeed, the inequality
l¢z(2)] < 1 holds if and only if

|z* = 220 — 20 + |20l* < 1 — Zoz — 202 + [Z02I*.
Canceling terms we see the claim |¢,,(z)| < 1 is equivalent to
|2 + lz0l* < 1+ 2|20l

Since |zo| < 1 this is always true for z € B;(0).” To show that ¢, is bijective it suffices to
note that the inverse function is given by ¢_,.
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IRecall a map is biholomorphic if it is bijective, holomorphic, and its inverse is holomorphic.

“Hint. Recall the Schwarz lemma.

3Consider the real-squared-to-real assignment f(x, y) := x + y — xy. Clearly, it has a maximum on [0, 1]2.
As Vf(x,z) = (1 — y)e; + (1 — x)e; its gradient never vanishes in the interior (0, 1)2, so that the maximum
lies on the boundary. Hence either x € {0, 1} or y € {0, 1}. In both cases one can check f(x,y) < 1. Thus

f(x,y) <1for (x,y) € (0,1)2



2 SOLUTION SKETCHES TO HOMEWORK 7

b. In order to prove the representation of biholomorphic maps from B;(0) to B;(0) we
note that, setting —zo = f~'(0), the function f o ¢, satisfies f (¢, (0)) = 0. Hence by the
Schwarz lemma we get | f(¢4,(2))| < |z|. Similarly, for the inverse cpz‘ol o f~! we deduce
loz (71 ()] < |yl Inserting y = f(¢z,(z)) we obtain that | f (¢ (z))| = |z|, so that
again by the Schwarz Lemma there exists a constant a € dB;(0) such that f (¢, (z)) = az
for every z € B1(0). Hence f(z) = ap_,,(z) for every z € B;(0).

Homework 7.3 (Improvement of the Bloch constant). The purpose of this exercise is to
improve the constant 3/2 — V2 appearing in Bloch’s theorem®. We will show that for every
f € H(B,(0)) with £’(0) = 1 the image f(B;(0)) contains a disk of radius 3v2/2 — 2.
a. Motivated by Homework 7.1, we look for a function F € F((B;(0)) such that
f(B1(0)) = F(B1(0)) with maximal value |F’(0)|. To make this precise, set

Fi={fo(ayy):z0€Bi(0), a cdB(0)}

where ¢, is from Homework 7.2. Show that every h € F with h = f o (a ¢4)
obeys h € H'(B1(0)), h(B1(0)) = f(B1(0)) and |1’ (0)| = | f(=azo)|(1 = |zo]*).

b. Let g denote the maximizer of the assignment | /' (z)|(1 — |z|?), where z € B;(0).
Show g € B1(0) and that, setting F' := f o (¢_,), we have

Lf"(@)I(1 - |q]?)
1-[z2

c. Deduce |F’(z)| < 2|F’(0)| whenever |z| < V2/2. Conclude the proof using Step 2
of the proof of Bloch’s theorem in the lecture.

|F'(2)| <

Solution. a. Each function ¢, in question has its only singularity in = zo/|zo|>. Note
that |2| = |z0|~' > 1, which yields ¢,, € 3H(B;(0)). In order to show the composition
h:= f o (agy,) belongs to H(B(0)), we have to ensure for every r > 0 there exists > 0
such that a@,,(B14+,(0)) C B14-(0), which implies holomorphy of the composition on
B14,;(0). Since |a| = 1 it suffices to consider a = 1. We argue by contradiction and assume
that there exists > 0 such that for every n € N, setting 17, = 1/n there is z, € By, (0) with
l¢z, (zn)| = 1 +r. Up to a subsequence we know (z,)neN converges to some zo, € Bj(0).
From Homework 7.2, it follows ¢, (B;(0)) = B;(0), so that from continuity we deduce
|z, (2)| < 1 for every z € B1(0). This contradicts the fact that |¢,,(ze)| > 1+ 7, which
follows again from continuity. Thus # € H(B;(0)) as claimed.

The equality #(B1(0)) = f(B1(0)) follows from the fact shown in Homework 7.2 that
ayp, maps B;(0) bijectively to B;(0).

Finally, a direct computation yields ¢7 (0) =1 - |z0|?, so that by the chain rule

[ (0)] = | (agz, (0)ag?, (0)] = | (=azo)|(1 = |zo*).

b) Since |f’(z)|(1 — |z|*) depends continuously on z € B;(0), this function has a
maximizer on B1(0). Since this map vanishes on dB;(0) and is positive e.g. in 0, this
maximum is achieved at an interior point g € B1(0). Setting F = f o ¢_,, note that

F={Fo(aypy):acdBi(0), zo € B1(0)}.

Indeed, for every a;, a, € dB1(0) and z;, zo € B;(0) the function (a;¢;,) o (a2¢;,) is again
a biholomorphic map from B;(0) to B;(0) and in Homework 7.2 we have shown that such

biholomorphic maps can always be represented in the form as¢_, for some a3z € dB;(0)
and z3 € B1(0).

“The optimal constant (say B) in Bloch’s theorem is not known. There are lower and upper bounds. The best
known thus far are

1 T(1/3)T(11/12)
v T

0.4332127... = ? +2-10*<B< =0.4718617...
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Thus part a. applied also to F implies that for every z € B(0) there exists z/ € B (0)
and a € dB;(0) such that

[F/ (D)1= 12*) = |(F o (=¢2))’ (0)]
=[(f o (apz))"(0)
=|f"(=az)I(1 = | - aZ' )
< |f" (@11 =g,

where in the last inequality we used the maximality of g. This concludes the proof of b.
¢) By item a. we have that

F'(0) = |f"()I(1 = IgP),

so that b. implies |F’(z)| < 2|F’(0)| whenever |z| < V2/2. Since F’(0) > f/(0) = 1 we
know F' is nonconstant. Hence Step 2 of the proof of Bloch’s theorem and a. yield the
inclusions Bg (F(0)) C F(B\ﬁ/z(o)) c F(B(0)) = f(B,(0)) for R = 3V2/2 — 2. This is
the claim.

Homework 7.4 (Optional and difficult exercise). Let G c C be a simply connected domain
and let f : G — C be holomorphic. We define P := f(G) N {-1, 1}. Show there exists a
holomorphic function g: G — C such that f = cos(g) if and only if for each z¢ € P the
function f — f(zo) has a zero of even order’.

Solution. Assume first that for each fixed zg € P the map f — f(zo) has a zero of even order.
Set P, ={z € G: f(z) =+1}. We claim that we can define holomorphic square roots of
f(z) —1land f(z) + 1 on G. Indeed, it follows from the Weierstra3 product theorem that
there exists a holomorphic function #: G — C such that {4 = 0} = P, and the multiplicity
of each zero of & coincides with half the multiplicity of the zero of f(z) — 1 in P, (this is
still an integer). Then the function (f — 1)/h? never vanishes on G, so that there exists
h: G — C holomorphic such that

f(Z) 1= efz(z) h(Z)2 — [efl(z)/Z h(Z)]2,

where we used G is simply connected.
By the same argument we can define a holomorphic square root of f + 1.
Next, we note the holomorphic assignment

F@Q+Vf@)+1Vf() -1

never vanishes on G, since otherwise f(z)? = f(z)? — 1, which is impossible. Hence we
can define the holomorphic function

g(z) = —ilog(f(2) +Vf(2) + 1Nf(2) - D).

Then by the definition of the cosine we have

cos(g(z)) = %eXp(—i2 log(f(2) + Vf(2) + 1V f(2) = 1))

+ 3 exp(ilog(f(2) + V(@) + V7@ - D)

. 1
= — 1 _1
2[f(z)+\/f(2)+ /(@) +f(z)+\/f(z)+1\/f(z)—1]

This proves the first claim.
Now suppose there exists zg € P, such that f — 1 has a zero of odd multiplicity. Then
we can write f(z) — 1 = (z — z0)**"'h(z) with h: G — C holomorphic and A(zg) # 0 and

SHint. Show one can define the assignment g(z) = —i log(f(z) + v f(z2) + 1§/ f(z) — 1). To define the

square root, the Weierstrall product theorem might help.
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k € N. Assume by contradiction that f = cos(g) for some holomorphic functiong : G — C.
Without loss of generality we may assume that g(zg) = 0 with multiplicity m € N. Since
cos(z) — 1 = z%k(z) with some holomorphic function k: C — C with k(0) # 0 it follows
that cos(g(z)) — 1 as a zero of order 2m, which is even. This gives a contradiction. The case
when f + 1 has a zero of odd multiplicity can be treated in a similar way using that without
loss of generality g(zo) — 7 = 0 with multiplicity n € N and cos(z) + 1 = (z — m)?b(z) with
b: C — C holomorphic and b(rr) # 0, so that cos(g(z)) + 1 has a zero with multiplicity 2n.



