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Homework 7.1 (A general version of Bloch’s theorem). Show if 𝑓 : 𝑈 → C is holomorphic
and 𝑓 ′ (𝑐) ≠ 0 at a point 𝑐 ∈ 𝑈, then 𝑓 (𝑈) contains disks of every radius (3/2−

√
2)𝑠 | 𝑓 ′ (𝑐) |,

where 𝑠 ∈ (0, dist(𝑐, 𝜕𝑈)). In particular, show if 𝑓 : C → C is entire and nonconstant, then
𝑓 (C) contains disks of arbitrarily large radii.

Solution. The function 𝑔 : 𝐵1 (0) → C defined by

𝑔(𝑧) = 𝑓 (𝑠𝑧 + 𝑐)
𝑠 𝑓 ′ (𝑐)

is well-defined and can be extended holomorphically to the slightly larger ball 𝐵1+𝜂 (0)
for 0 < 𝜂 < (dist(𝑐, 𝜕𝑈) − 𝑠)/𝑠. Therefore, 𝑔 ∈ H(𝐵̄1 (0)) and by construction 𝑔′ (0) = 1.
Applying Bloch’s theorem from the lecture notes yields the existence of 𝑝 ∈ C such that
𝐵3/2−

√
2 (𝑝) ⊂ 𝑔(𝐵1 (0)). It follows that

𝑠 𝑓 ′ (𝑐)𝐵3/2−
√

2 (𝑝) ⊂ 𝑓 (𝐵𝑠 (𝑐)) ⊂ 𝑓 (𝑈).
This proves the first statement.

When 𝑓 is entire and nonconstant, there exists 𝑐 ∈ C such that 𝑓 ′ (𝑐) ≠ 0. Thus we can
apply the first statement for every 𝑠 > 0 which proves the second assertion.

Homework 7.2 (Biholomorphic functions on the unit ball). Let 𝑧0 ∈ 𝐵1 (0) and define the
function 𝜑𝑧0 : 𝐵1 (0) → C by

𝜑𝑧0 (𝑧) :=
𝑧 − 𝑧0

1 − 𝑧0 𝑧
.

a. Show 𝜑𝑧0 is a biholomorphic1 map from 𝐵1 (0) to 𝐵1 (0).
b. Show every biholomorphic map 𝑓 : 𝐵1 (0) → 𝐵1 (0) is of the form 𝑓 = 𝑎 𝜑𝑧0 , where

𝑎 ∈ 𝜕𝐵1 (0)2.

Solution. a. Since |𝑧0𝑧 | = |𝑧0 | |𝑧 | < |𝑧 |, the denominator never vanishes for 𝑧 ∈ 𝐵1 (0),
showing 𝜑𝑧0 is holomorphic.

We next check that 𝜑𝑧0 indeed maps into the unit disk 𝐵1 (0). Indeed, the inequality
|𝜑𝑧0 (𝑧) | < 1 holds if and only if

|𝑧 |2 − 𝑧𝑧0 − 𝑧𝑧0 + |𝑧0 |2 < 1 − 𝑧0𝑧 − 𝑧0𝑧 + |𝑧0𝑧 |2.
Canceling terms we see the claim |𝜑𝑧0 (𝑧) | < 1 is equivalent to

|𝑧 |2 + |𝑧0 |2 < 1 + |𝑧 |2 |𝑧0 |2.
Since |𝑧0 | < 1 this is always true for 𝑧 ∈ 𝐵1 (0).3 To show that 𝜑𝑧0 is bijective it suffices to
note that the inverse function is given by 𝜑−𝑧0 .

Date: November 11, 2024.
1Recall a map is biholomorphic if it is bijective, holomorphic, and its inverse is holomorphic.
2Hint. Recall the Schwarz lemma.
3Consider the real-squared-to-real assignment 𝑓 (𝑥, 𝑦) := 𝑥 + 𝑦 − 𝑥𝑦. Clearly, it has a maximum on [0, 1]2.

As ∇ 𝑓 (𝑥, 𝑧) = (1 − 𝑦)𝑒1 + (1 − 𝑥 )𝑒2 its gradient never vanishes in the interior (0, 1)2, so that the maximum
lies on the boundary. Hence either 𝑥 ∈ {0, 1} or 𝑦 ∈ {0, 1}. In both cases one can check 𝑓 (𝑥, 𝑦) ≤ 1. Thus
𝑓 (𝑥, 𝑦) < 1 for (𝑥, 𝑦) ∈ (0, 1)2.
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b. In order to prove the representation of biholomorphic maps from 𝐵1 (0) to 𝐵1 (0) we
note that, setting −𝑧0 = 𝑓 −1 (0), the function 𝑓 ◦ 𝜑𝑧0 satisfies 𝑓 (𝜑𝑧0 (0)) = 0. Hence by the
Schwarz lemma we get | 𝑓 (𝜑𝑧0 (𝑧)) | ≤ |𝑧 |. Similarly, for the inverse 𝜑−1

𝑧0 ◦ 𝑓 −1 we deduce
|𝜑−1

𝑧0 ( 𝑓
−1 (𝑦)) | ≤ |𝑦 |. Inserting 𝑦 = 𝑓 (𝜑𝑧0 (𝑧)) we obtain that | 𝑓 (𝜑𝑧0 (𝑧)) | = |𝑧 |, so that

again by the Schwarz Lemma there exists a constant 𝑎 ∈ 𝜕𝐵1 (0) such that 𝑓 (𝜑𝑧0 (𝑧)) = 𝑎𝑧

for every 𝑧 ∈ 𝐵1 (0). Hence 𝑓 (𝑧) = 𝑎𝜑−𝑧0 (𝑧) for every 𝑧 ∈ 𝐵1 (0).

Homework 7.3 (Improvement of the Bloch constant). The purpose of this exercise is to
improve the constant 3/2 −

√
2 appearing in Bloch’s theorem4. We will show that for every

𝑓 ∈ H(𝐵̄1 (0)) with 𝑓 ′ (0) = 1 the image 𝑓 (𝐵1 (0)) contains a disk of radius 3
√

2/2 − 2.
a. Motivated by Homework 7.1, we look for a function 𝐹 ∈ H(𝐵̄1 (0)) such that

𝑓 (𝐵1 (0)) = 𝐹 (𝐵1 (0)) with maximal value |𝐹′ (0) |. To make this precise, set
F := { 𝑓 ◦ (𝑎 𝜑𝑧0 ) : 𝑧0 ∈ 𝐵1 (0), 𝑎 ∈ 𝜕𝐵1 (0)},

where 𝜑𝑧0 is from Homework 7.2. Show that every ℎ ∈ F with ℎ = 𝑓 ◦ (𝑎 𝜑𝑧0 )
obeys ℎ ∈ H1 (𝐵̄1 (0)), ℎ(𝐵1 (0)) = 𝑓 (𝐵1 (0)) and |ℎ′ (0) | = | 𝑓 ′ (−𝑎𝑧0) | (1 − |𝑧0 |2).

b. Let 𝑞 denote the maximizer of the assignment | 𝑓 ′ (𝑧) | (1 − |𝑧 |2), where 𝑧 ∈ 𝐵̄1 (0).
Show 𝑞 ∈ 𝐵1 (0) and that, setting 𝐹 := 𝑓 ◦ (𝜑−𝑞), we have

|𝐹′ (𝑧) | ≤ | 𝑓 ′ (𝑞) | (1 − |𝑞 |2)
1 − |𝑧 |2

.

c. Deduce |𝐹′ (𝑧) | ≤ 2|𝐹′ (0) | whenever |𝑧 | ≤
√

2/2. Conclude the proof using Step 2
of the proof of Bloch’s theorem in the lecture.

Solution. a. Each function 𝜑𝑧0 in question has its only singularity in 𝑧 = 𝑧0/|𝑧0 |2. Note
that |𝑧 | = |𝑧0 |−1 > 1, which yields 𝜑𝑧0 ∈ H(𝐵̄1 (0)). In order to show the composition
ℎ := 𝑓 ◦ (𝑎𝜑𝑧0 ) belongs to H(𝐵̄1 (0)), we have to ensure for every 𝑟 > 0 there exists 𝜂 > 0
such that 𝑎𝜑𝑧0 (𝐵1+𝜂 (0)) ⊂ 𝐵1+𝑟 (0), which implies holomorphy of the composition on
𝐵1+𝜂 (0). Since |𝑎 | = 1 it suffices to consider 𝑎 = 1. We argue by contradiction and assume
that there exists 𝑟 > 0 such that for every 𝑛 ∈ N, setting 𝜂𝑛 = 1/𝑛 there is 𝑧𝑛 ∈ 𝐵1+𝜂𝑛

(0) with
|𝜑𝑧0 (𝑧𝑛) | ≥ 1 + 𝑟. Up to a subsequence we know (𝑧𝑛)𝑛∈N converges to some 𝑧∞ ∈ 𝐵1 (0).
From Homework 7.2, it follows 𝜑𝑧0 (𝐵1 (0)) = 𝐵1 (0), so that from continuity we deduce
|𝜑𝑧0 (𝑧) | ≤ 1 for every 𝑧 ∈ 𝐵̄1 (0). This contradicts the fact that |𝜑𝑧0 (𝑧∞) | ≥ 1 + 𝑟, which
follows again from continuity. Thus ℎ ∈ H(𝐵̄1 (0)) as claimed.

The equality ℎ(𝐵1 (0)) = 𝑓 (𝐵1 (0)) follows from the fact shown in Homework 7.2 that
𝑎𝜑𝑧0 maps 𝐵1 (0) bijectively to 𝐵1 (0).

Finally, a direct computation yields 𝜑′
𝑧0 (0) = 1 − |𝑧0 |2, so that by the chain rule

|ℎ′ (0) | = | 𝑓 ′ (𝑎𝜑𝑧0 (0))𝑎𝜑′
𝑧0 (0) | = | 𝑓 ′ (−𝑎𝑧0) | (1 − |𝑧0 |2).

b) Since | 𝑓 ′ (𝑧) | (1 − |𝑧 |2) depends continuously on 𝑧 ∈ 𝐵̄1 (0), this function has a
maximizer on 𝐵̄1 (0). Since this map vanishes on 𝜕𝐵1 (0) and is positive e.g. in 0, this
maximum is achieved at an interior point 𝑞 ∈ 𝐵1 (0). Setting 𝐹 = 𝑓 ◦ 𝜑−𝑞 , note that

F = {𝐹 ◦ (𝑎𝜑𝑧0 ) : 𝑎 ∈ 𝜕𝐵1 (0), 𝑧0 ∈ 𝐵1 (0)}.
Indeed, for every 𝑎1, 𝑎2 ∈ 𝜕𝐵1 (0) and 𝑧1, 𝑧2 ∈ 𝐵1 (0) the function (𝑎1𝜑𝑧1 ) ◦ (𝑎2𝜑𝑧2 ) is again
a biholomorphic map from 𝐵1 (0) to 𝐵1 (0) and in Homework 7.2 we have shown that such
biholomorphic maps can always be represented in the form 𝑎3𝜑𝑧3 for some 𝑎3 ∈ 𝜕𝐵1 (0)
and 𝑧3 ∈ 𝐵1 (0).

4The optimal constant (say 𝐵) in Bloch’s theorem is not known. There are lower and upper bounds. The best
known thus far are

0.4332127... =
√

3
4

+ 2 · 10−4 ≤ 𝐵 ≤ 1√︁
1 +

√
3

Γ (1/3) Γ (11/12)
Γ (1/4) = 0.4718617...
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Thus part a. applied also to 𝐹 implies that for every 𝑧 ∈ 𝐵1 (0) there exists 𝑧′ ∈ 𝐵1 (0)
and 𝑎 ∈ 𝜕𝐵1 (0) such that

|𝐹′ (𝑧) | (1 − |𝑧 |2) = | (𝐹 ◦ (−𝜑𝑧))′ (0) |
= | ( 𝑓 ◦ (𝑎𝜑𝑧′ ))′ (0) |
= | 𝑓 ′ (−𝑎𝑧′) | (1 − | − 𝑎𝑧′ |2)
≤ | 𝑓 ′ (𝑞) | (1 − |𝑞 |2),

where in the last inequality we used the maximality of 𝑞. This concludes the proof of b.
c) By item a. we have that

𝐹′ (0) = | 𝑓 ′ (𝑞) | (1 − |𝑞 |2),

so that b. implies |𝐹′ (𝑧) | ≤ 2|𝐹′ (0) | whenever |𝑧 | ≤
√

2/2. Since 𝐹′ (0) ≥ 𝑓 ′ (0) = 1 we
know 𝐹 is nonconstant. Hence Step 2 of the proof of Bloch’s theorem and a. yield the
inclusions 𝐵𝑅 (𝐹 (0)) ⊂ 𝐹 (𝐵√

2/2 (0)) ⊂ 𝐹 (𝐵1 (0)) = 𝑓 (𝐵1 (0)) for 𝑅 = 3
√

2/2 − 2. This is
the claim.
Homework 7.4 (Optional and difficult exercise). Let 𝐺 ⊂ C be a simply connected domain
and let 𝑓 : 𝐺 → C be holomorphic. We define 𝑃 := 𝑓 (𝐺) ∩ {−1, 1}. Show there exists a
holomorphic function 𝑔 : 𝐺 → C such that 𝑓 = cos(𝑔) if and only if for each 𝑧0 ∈ 𝑃 the
function 𝑓 − 𝑓 (𝑧0) has a zero of even order5.
Solution. Assume first that for each fixed 𝑧0 ∈ 𝑃 the map 𝑓 − 𝑓 (𝑧0) has a zero of even order.
Set 𝑃± = {𝑧 ∈ 𝐺 : 𝑓 (𝑧) = ±1}. We claim that we can define holomorphic square roots of
𝑓 (𝑧) − 1 and 𝑓 (𝑧) + 1 on 𝐺. Indeed, it follows from the Weierstraß product theorem that
there exists a holomorphic function ℎ : 𝐺 → C such that {ℎ = 0} = 𝑃+ and the multiplicity
of each zero of ℎ coincides with half the multiplicity of the zero of 𝑓 (𝑧) − 1 in 𝑃+ (this is
still an integer). Then the function ( 𝑓 − 1)/ℎ2 never vanishes on 𝐺, so that there exists
ℎ̃ : 𝐺 → C holomorphic such that

𝑓 (𝑧) − 1 = eℎ̃ (𝑧) ℎ(𝑧)2 =
[
𝑒ℎ̃ (𝑧)/2 ℎ(𝑧)

]2
,

where we used 𝐺 is simply connected.
By the same argument we can define a holomorphic square root of 𝑓 + 1.
Next, we note the holomorphic assignment

𝑓 (𝑧) +
√︁
𝑓 (𝑧) + 1

√︁
𝑓 (𝑧) − 1

never vanishes on 𝐺, since otherwise 𝑓 (𝑧)2 = 𝑓 (𝑧)2 − 1, which is impossible. Hence we
can define the holomorphic function

𝑔(𝑧) = −i log( 𝑓 (𝑧) +
√︁
𝑓 (𝑧) + 1

√︁
𝑓 (𝑧) − 1).

Then by the definition of the cosine we have

cos(𝑔(𝑧)) = 1
2

exp(−i2 log( 𝑓 (𝑧) +
√︁
𝑓 (𝑧) + 1

√︁
𝑓 (𝑧) − 1))

+ 1
2

exp(i2 log( 𝑓 (𝑧) +
√︁
𝑓 (𝑧) + 1

√︁
𝑓 (𝑧) − 1))

=
1
2

[
𝑓 (𝑧) +

√︁
𝑓 (𝑧) + 1

√︁
𝑓 (𝑧) − 1 + 1

𝑓 (𝑧) +
√︁
𝑓 (𝑧) + 1

√︁
𝑓 (𝑧) − 1

]
= 𝑓 (𝑧).

This proves the first claim.
Now suppose there exists 𝑧0 ∈ 𝑃+ such that 𝑓 − 1 has a zero of odd multiplicity. Then

we can write 𝑓 (𝑧) − 1 = (𝑧 − 𝑧0)2𝑘−1ℎ(𝑧) with ℎ : 𝐺 → C holomorphic and ℎ(𝑧0) ≠ 0 and

5Hint. Show one can define the assignment 𝑔 (𝑧) := −i log( 𝑓 (𝑧) +
√︁
𝑓 (𝑧) + 1

√︁
𝑓 (𝑧) − 1) . To define the

square root, the Weierstraß product theorem might help.
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𝑘 ∈ N. Assume by contradiction that 𝑓 = cos(𝑔) for some holomorphic function 𝑔 : 𝐺 → C.
Without loss of generality we may assume that 𝑔(𝑧0) = 0 with multiplicity 𝑚 ∈ N. Since
cos(𝑧) − 1 = 𝑧2𝑘 (𝑧) with some holomorphic function 𝑘 : C → C with 𝑘 (0) ≠ 0 it follows
that cos(𝑔(𝑧)) − 1 as a zero of order 2𝑚, which is even. This gives a contradiction. The case
when 𝑓 + 1 has a zero of odd multiplicity can be treated in a similar way using that without
loss of generality 𝑔(𝑧0) − 𝜋 = 0 with multiplicity 𝑛 ∈ N and cos(𝑧) + 1 = (𝑧 − 𝜋)2𝑏(𝑧) with
𝑏 : C → C holomorphic and 𝑏(𝜋) ≠ 0, so that cos(𝑔(𝑧)) + 1 has a zero with multiplicity 2𝑛.


